TEST REPORT: Nr.159

Date: July 18, 2022

CHILLER EFFIENCY PERFORMANCE WITH INTELLIGENT ADIABATIC CHILLER BOOSTER **SMART COOLING™** PRO10 SYSTEM FOR YORK YVAA0345 CHILLER

Test Participants:

Al Hammadi hospital Engineer: Mr. Ahmad Suliman

INTEGRATED INTERNATIONAL POWER CO.: Mr. Owais

Swiss Integrated Energy Technologies Engineer: Armands Mucenieks

Project name: Al Hammadi Hospital

Location: Riyadh, KSA

Table of Contents

Introduction	3
Main components	4
Measuring instruments	5
Testing procedures	5
Conclusion	9
Anney	10

Introduction:

Type of building: Al Hammadi Hospital, Riyadh, KSA.

Cooling units: air-cooled water chiller Trane RTAC 500

Chiller booster: Smart Cooling™ PRO 10, adiabatic technology with condenser protection.

Chillers were retrofitted with the intelligent adiabatic **Smart Cooling™** system to reduce their electricity consumption and increase COP (Coefficient of Performance) efficiency.

The intelligent adiabatic **Smart Cooling**™ system combines an adiabatic evaporative pre-cooling process and condenser protection with mechanical air filtration. The intelligent adiabatic **Smart Cooling**™ system is mounted externally in front of the condensers of the cooling equipment. **Smart Cooling**™ initiates the adiabatic process even before the mechanical cooling kicks in and the equipment receives a temperature-reducing fine mist of processed water that reduces the temperature of condensation within the cooling circuit.

Smart Cooling™ ensure 100% condenser protection from direct contact with water.

Main components:

Smart Cooling[™] comprises the following key components: protective membranes, water treatment and recirculation systems, high-pressure water pump, control unit, high-pressure nozzle panels, fasteners, and fixings.

Protective membranes are installed outside the condenser and cover its entire surface, preventing water mist from coming into direct contact with the condenser.

Water filtration, purification, and sterilization: the system purifies water from minerals and sterilizes water to prevent bacterial occurrence.

A high-pressure pump provides water pressure of up to 70 bar while a water recirculation system reintroduces non-evaporated water into the water purification and pump system.

The control unit regulates the system according to real-time data sets such as chiller parameters, ambient air temperature and humidity to supply the adiabatic system with the appropriate amount of water.

A high-pressure nozzle provides water spray with 5- to 40-micron droplets.

A set of fasteners and fixings ensure the compatibility of the equipment with the chiller.

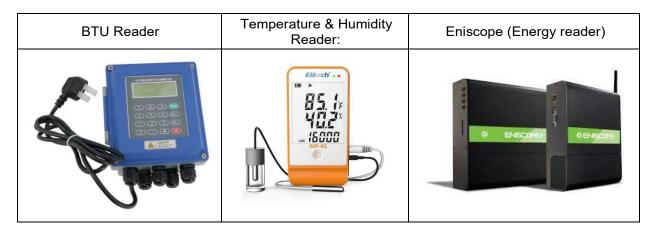
Measuring instruments:

A RIF600 ultrasonic water flow meter was used to measure the effectiveness of the chiller. The energy monitoring equipment Enicope analytics (BEST), was used to measure energy consumption.

The Temperature & Humidity monitoring data logger (Elitech) was used to measure ambient temperature, humidity & air entering temperature into the condenser coils.

Chiller with Smart Cooling™ system

Equipment tested: Air-cooled water chillers, Trane RTAC 500


Testing procedures:

Testing has been carried out on chiller No.1.

Testing period: 2022/07/09 to 2022/07/12 - adiabatic system **Smart Cooling[™]** switched ON Testing period: 2022/07/13 to 2022/07/16 - adiabatic system **Smart Cooling[™]** switched OFF

Step 1

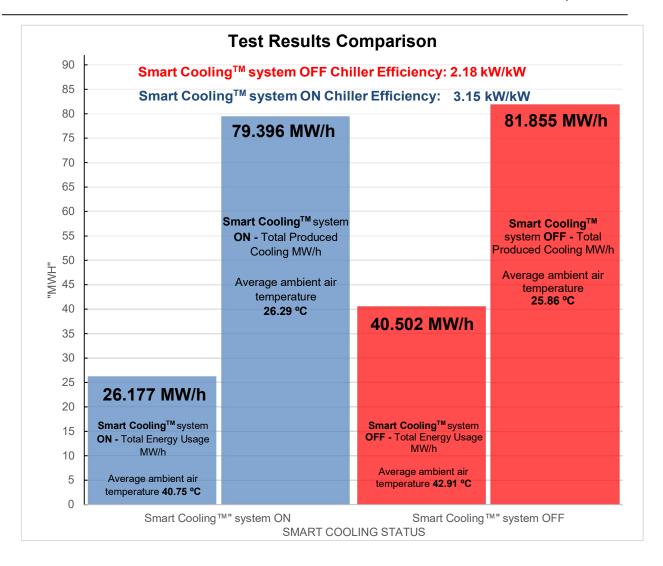
A data logger is installed on the subject HVAC equipment to collect all applicable real-time energy consumption and unit performance information. Data is collected by using an Eniscope Analytics temperature sensor and BTU reader.

Step 2

The Smart Cooling™ system is switched ON.

Step 3

During the period between 09/07/2022 and 12/07/2022, the test measured energy used by the chillers with the intelligent adiabatic system Smart Cooling™ turned ON (Chiller # 1 was in operation). During this period, the chiller operates 96 hours, consumed 26.177 MW/h of electricity, produced 79.396 MW/h of cooling, with average Chiller efficiency 3.15 KW/KW and average Ambient temperature of 40.75 °C.

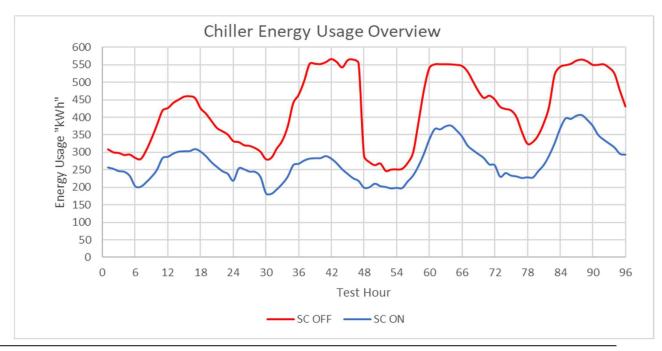

Step 4

The Smart Cooling™ system is switched OFF.

Step 5

During the period from 13/07/2022 - 16/07/2022 of the test measured energy used by the chiller without the intelligent adiabatic system Smart Cooling™ unit turned OFF (Chiller # 1 was in operation). During this period the chiller operates 96 hours, consumed 40.502 MW/h of electricity, and produced 81.885 MW/h cooling, with average chiller efficiency 2.18 KW/KW and average ambient temperature of 42.91 °C

Post-analysis of data monitoring shows **44.5** % improvement in chiller performance achieved by **Smart Cooling™** system during 4 working days.


Testing Results Overview:

Smart (CoolingTM Test Report in Chiller 1 - Al Ham	madi Hospital, Riyadh, KSA			
SC Status	SC OFF	SC ON			
Test Period	Wed - 13/07/2022 Sat - 16/07/2022	Sat - 09/07/2022 Tue - 12/07/2022			
Chiller Operating Hours "hrs."	96 hrs.	96 hrs.			
Avg. Ambient temperature "°C"	42.91 °C	40.75 °C			
Avg. Humidity "%"	11.35 %	12.85 %			
Total Energy Usages "kWh"	40,502 kWh	26,177 kWh			
Total Produced Cooling "kWh"	81,885 kWh	79,396 kWh			
Avg. Unit Efficiency "kW/kW"	2.18 kW/kW	3.15 kW/kW			
Chiller Efficiency "%"	→ 44	1.5%			

		Chiller Operational	Ambient - T	Ambient - RH	CHW - FLOW	CHWR - T	CHWS - T	Cooling CAP	Energy Usage	
	DD/MM/YYYY	Hrs	°C	%	m3/hr	°C	°C	kWh	kWh	KW/KW
	09/07/2022	24.0 hrs	40.9 °C	13.6 %RH	206.28	8.62	5.25	19413.82	6245.71	3.11
	10/07/2022	24.0 hrs	40.7 °C	12.5 %RH	199.75	9.23	5.42	21257.43	5857.19	3.73
Ī	11/07/2022	24.0 hrs	41.0 °C	12.0 %RH	205.76	9.01	5.59	19623.80	6676.71	3.09
	12/07/2022	24.0 hrs	40.3 °C	13.3 %RH	206.87	8.83	5.52	19100.65	7397.00	2.67

Test Date & Time	Chiller Operational	Ambient - T	Ambient - RH	CHW - FLOW m3/hr	CHWR - T	CHWS - T	Cooling CAP kWh	Energy Usage kWh	Chiller Efficiency KW/KW
13/07/2022	24.0 hrs	41.7 °C	70 11.3 %RH	208.76	9.12	5.56	20739.45	8820.66	2.44
14/07/2022	24.0 hrs	42.5 °C	11.9 %RH	212.64	9.15	5.90	19260.44	10417.45	2.02
15/07/2022	24.0 hrs	43.6 °C	11.7 %RH	211.91	9.28	5.86	20195.94	9946.28	2.29
16/07/2022	24.0 hrs	44.0 °C	10.4 %RH	211.26	9.64	5.96	21688.98	11318.08	1.97

^{*}Note: refer to the supported document for hourly data.

Conclusion:

Test results data show that the adiabatic equipment Smart Cooling™ increases chiller performance, on average, by 44.5 % during 4 operating days.

Ali Soufan July 18, 2022

July 18, 2022

Annex

Riels instruments srl Viale Spagna, 16 35020 Ponte San Nicolò (PD) - ITALY Ph. +39 0498961771 | info@riels.it

15/12/2018

RIF600W

RIF600 | Clamp-on Ultrasonic Meter Calibration Report

 Pipe diameter
 DN80
 Date

 Ambient temperature
 29°C

 Standard Device before test
 Normal
 Model:

 Standard Devide After Test
 Normal

 Test result
 Qualified

 Measured Medium
 Water

 Accuracy
 1%

 Signal Strength
 UP: 90

 DOWN: 90

Standard device name Static volumetric method/standard Meter Method Water Flow/Standard Device Standard device accuracy 0,20%

Test	Test Standard Mete		Temperature	Pressure	Tested	Meter Flow	Basic	Error	Repeat	tability									
Point	Point m3/h	m3/h		m3/h		m3/h		m3/h °C		Мра	m3/h		%		%				
	101,52	X.	25,0	0,300	102,27		0,739												
Point 1	101,47	101,47	25,0	0,300	102,07	102,10	0,591	1	-0,147										
	101,42	1 22	25,0	0,300	101,97	7.0	0,542	1	5578										
	71,27	*	25,0	0,300	71,75	71,75										0,673		2	83
Point 2	71,19	71,27	25,0	0,300	71,65		0,646	0,759	-0,146	0,147									
	71,34		25,0	0,300	71,86		0,729			001									
	26,32		25,0	0,300	26,51		0,722	1		Ť									
Point 3	26,36	26,36	25,0	0,300	26,56	26,55	26,55 0,759 0,720		-0,132										
200000000000000000000000000000000000000	26,39	NAME OF TAXABLE PARTY.	25,0	0,300	26,58	S-10-61-510		1											

Verification Based on Scale Factor=1 JJG 1030-2007 < Ultrasonic flowmeter verification procedures >

Riels instruments srl | test Report

Pag. 1 di 2

Riels instruments srl Viale Spagna, 16 35020 Ponte San Nicolò (PD) - ITALY Ph. +39 0498961771 | info@riels.it

Date

Model:

15/12/2018

RIF600W

RIF600 |Test Report misuratore di portata ad ultrasuoni clamp on

DN80 Diametro tubazione 29°C Temperatura ambiente

Dispositivo standard prima del test Normale Dispositivo standard dop il test Normale

Qualified Risultato del test Liquido Acqua Accuratezza Potenza dei segnali UP: DOWN:

90 Tipo di dispositivo standard Metodo volumetrico statico/Misuratore di portata volumetrico

90

Accuratezza del dispositivo standa 0,20%

Test	Misuratore standard	Temperatura	Pressione	Misurat	tore testato	errore	base	Ripet	ibilità		
Punti	Punti m3/h		Мра		m3/h	9/	0	9	6		
0000000000	101,52	25,0	0,300	102,27		0,739					
Punto 1	101,47 101,47	25,0	0,300	102,07	102,10	0,591	Ī	-0,147			
W155-1004-7-625-470	101,42	25,0	0,300	101,97			0,542	Ī	S. 407 - 3 - 7 - 7 - 7		
	71,27	25,0	0,300	71,75	3	0,673					
Punto 2	71,19 71,27	25,0	0,300	71,65	71,75	0,646	0,759	-0,146	0,147		
	71,34	25,0	0,300	71,86					0,729		101
	26,32	25,0 0,300 26,	26,51				0,722	18	S	1	
Punto 3	26,36 26,36	25,0	0,300	0 26,56 26,55 0,759	31	-0,132					
	26,39	25,0	0,300	26,58		0,720	Ţ.	Sta			

Verification Based on

JJG 1030-2007 < Ultrasonic flowmeter verification procedures >

Scale Factor=1

Riels instruments srl | test Report

Pag. 2 di 2

