
TEST REPORT

158

SMART COOLING™ PRO10 SYSTEM

Microsoft Lavalle

Test Participants:

Project name: MICROSOFT LAVALLE Location: Karnataka, India

Carrier Engineer: Ravi Kiran

CBRE, Facility Engineer: Heggappa M.A.

Swiss Integrated Energy Technologies: Armands Mucenieks

Table of Contents

Introduction:	3
Main components:	4
Measuring instruments:	5
Testing procedures:	6
Testing results comparision:	8
Conclusion:	10
Annex:	11

Introduction:

Type of building: Microsoft office building, India.

Cooling units: Air cooled water chiller CARRIER 30XA1212

Chiller booster: Smart Cooling ™ PRO 10, adiabatic technology with condenser protection.

Chillers were retrofitted with the intelligent adiabatic *Smart Cooling*™ system to reduce their electricity consumption and increase COP (Coefficient of Performance) efficiency.

The intelligent adiabatic $Smart\ Cooling^{\intercal}$ system combines an adiabatic evaporative pre-cooling process and condenser protection with mechanical air filtration. The intelligent adiabatic $Smart\ Cooling^{\intercal}$ system is mounted externally in front of the condensers of the cooling equipment. $Smart\ Cooling^{\intercal}$ initiates the adiabatic process even before the mechanical cooling kicks in and the equipment receives a temperature-reducing fine mist of processed water that within the cooling circuit.

Smart Cooling™ ensures 100% condenser protection from direct contact with water.

Main components:

Smart Cooling[™] comprises the following key components: **protective membranes**, **water** treatment and recirculation systems, high-pressure water pump, control unit, high-pressure nozzle panels, fasteners, and fixings.

Protective membranes are installed outside the condenser and cover its entire surface, preventing water mist from coming into direct contact with the condenser.

Water filtration, purification, and sterilization: the system purifies water from minerals and sterilizes water to prevent bacterial occurrence.

A **high-pressure pump** provides water pressure of up to 70 bar while a water recirculation system reintroduces non-evaporated water into the water purification and pump system.

The **control unit** regulates the system according to real-time data sets such as chiller parameters, ambient air temperature, and humidity to supply the adiabatic system with the appropriate amount of water.

A high-pressure nozzle provides water spray with 5- to 40-micron droplets.

A set of fasteners and fixings ensure the compatibility of the equipment with the chiller.

Measuring instruments:

A RIF600 ultrasonic water flow meter was used to measure the effectiveness of the chiller. The energy monitoring equipment Enicope analytics (BEST) was used to measure energy consumption. The Temperature & Humidity monitoring data logger (Elitech) was used to measure ambient temperature, humidity & air entering temperature into the condenser coils.

Chiller without Smart Cooling™ system

Chiller with Smart Cooling™ system

• Equipment tested: Air-cooled water chillers, Trane RTAC 500

Testing procedures:

Testing has been carried out on chiller No. 1.

Testing period: 2022/02/17 to 2022/02/25 - adiabatic system Smart Cooling™ switched

ON

Testing period: 2022/03/10 to 2022/03/18 - adiabatic system Smart Cooling™ switched

OFF

Step 1:

A data logger is installed on the subject HVAC equipment to collect all applicable real-time energy consumption and unit performance information. Data is collected by using an Eniscope Analytics temperature sensor and BTU reader.

Step 2:

The Smart Cooling™ system is switched ON

Temperature and Humidity Reader

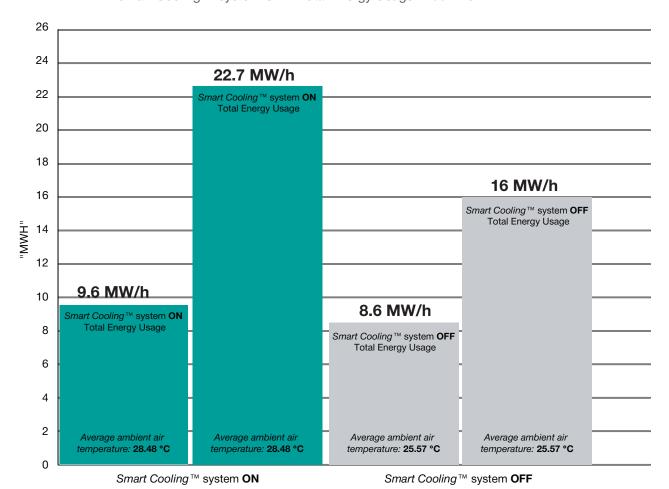
Eniscope (Energy Reader)

Step 3:

During the period between 09/07/2022 and 12/07/2022, the test measured energy used by the chillers with the intelligent adiabatic system *Smart Cooling*™ turned ON (Chiller #1 was in operation). During this period, the chiller consumed **8.617 MW/h** of electricity, produced 16.125 MW/h of cooling, with average ambient temperature 25.57 °C.

Step 4:

The Smart Cooling ™ system is switched OFF



Step 5:

During the period from 10/03/2022 - 18/03/2022, the test measured energy used by the chiller without the intelligent adiabatic system *Smart Cooling* ™ unit turned **OFF** (Chiller #1 was in operation). During this period, the chiller consumed **9.617 MW/h** of electricity, and produced **22.775 MW/h** of cooling, with average ambient temperature **29.04** °C.

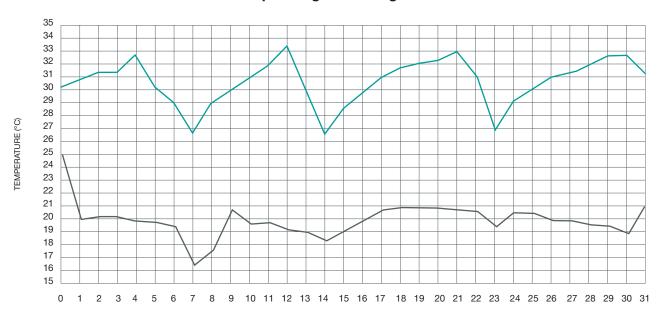
Test Results Comparison

Smart Cooling[™] system **OFF** – Total Energy Usage: **1.83 kW/h**Smart Cooling [™] system **ON** – Total Energy Usage: **2.38 kW/h**

SMART COOLING STATUS

Post-analysis of data monitoring shows **30.3** % **improvement** in chiller performance achieved by the *Smart Cooling* $^{\text{TM}}$ system during 7 working days.

Testing Results Overview:


Smart Cooling™ Test Report in Chiller 1 - Microsoft Lavalle Road Office Building, Bangalore, India

SC STATUS	SC OFF	SC ON		
TEST PERIOD	17/02/2022 Thu - 25/02/2022 Fri	10/03/2022 Thu - 18/03/2022 Fri		
CHILLER OPERATING HOURS ("hrs")	58 hrs	73 hrs		
AVG. AMBIENT TEMPERATURE (°C)	25.57 °C	29.04 °C		
SC OPERATING HOURS ("hrs")	0 hrs	62 hrs		
TOTAL ENERGY USAGE (kWh)	8,617 kWh	9,617 kWh		
TOTAL PRODUCED COOLING (kWh)	16,125 kWh	22,775 kWh		
AVG. UNIT EFFICIENCY (kW/kW)	1.83 kW/kW	2.38 kW/kW		
CHILLER EFFICIENCY (%)	30.3% imp	provement		

Unit Efficiency Overview

Chiller Operating Hours Avg. Ambient

AMBIENT - T CONDENSER INLET - T

Date	Chiller Operational	Ambient T	Avg. Condenser Air Entering T	Total Chiller 1 E	Avg. C.W Flow	Avg. C.W Return T	Avg. C.W Supply T	Total Cooling Capacity	Avg. Unit Efficiency EER
DD/MM/YY	Hrs	°C	°C	kWh	m³/hr	°C	°C	kWh	KW/KW
17.02.2022	10	25,71333351	25,83062496	1211,837102	208,9354833	12,32866333	11,30855733	2521,641417	2,098634034
18.02.2022	8	23,37122381	23,31992173	1106,15272	205,0766563	12,51935313	11,29998167	2389,184068	2,168155484
19.02.2022	2	22,44348955	22,20585938	36,74612957	144,69825	22,50055417	22,4204875	58,38325	1,581573622
20.02.2022	0	24,93369492	24,93926497	0	0	23,52220876	23,51964175	0	0
21.02.2022	6	29,22343715	29,05017376	763,8693288	167,1894167	15,23421014	14,58079181	1188,876045	1,552791494
22.02.2022	12	27,44262155	27,31041662	2204,872464	206,2142708	11,48708014	10,18113243	3790,149545	1,731486614
23.02.2022	11	25,8029356	25,37935604	1912,21205	211,4195606	10,34770023	9,062722576	3514,3619	1,808262407
24.02.2022	9	24,99386586	24,60324075	1380,963519	209,0569167	13,12962991	11,92116028	2662,76575	1,870459699
25.02.2022	0	24,21302084	24,16315103	0	0	15,15617326	15,76555451	0	0

Note* During the period of 17/02/2022 till 20/02/2022: Chiller circuits A & B were working, during this period Smart Cooling $^{\text{TM}}$ was OFF Notes* During the period of 21/02/2022 till 25/02/2022: Chiller circuits A & C were working, during this period Smart cooling $^{\text{TM}}$ was OFF

Date	Chiller Operational	SC Operating	Avg. Ambient T	Average Humidity	Avg. Condenser Air Entering T	Total Chiller 1 E	Avg. C.W. Flow	Avg. C.W. Return T	Avg. C.W. Supply T	Total Cooling Capacity	Avg. Unit Efficiency EER
DD/MM/YY	Hrs	Hrs	℃	%	℃	kWh	m³/hr	°C	°C	kWh	KW/KW
10.03.2022	13	8	28,43	32,65	21,08	1589,4	209,8	11,2	10,0	4027,9	2,53
11.03.2022	12	11	29,2	24,66	20,92	1273,1	208,8	12,0	11,0	3265,1	2,51
12.03.2022	0	0	26,62	36,02	26,16	0,0	0,5	22,2	22,9	0,0	0,00
13.03.2022	0	0	26,49	36,8	26,19	0,0	0,6	23,9	24,8	0,0	0,00
14.03.2022	13	11	28,74	37,00	20,43	1760,3	207,4	11,4	9,9	4772,3	2,74
15.03.2022	12	10	28,89	36,28	19,91	1604,6	194,4	11,6	10,2	4296,1	2,68
16.03.2022	12	2	28,95	43,67	N.A	2129,0	198,5	11,6	10,5	3418,8	1,67
17.03.2022	12	12	29,86	37,79	N.A	1654,0	171,0	12,4	11,5	2844,3	1,79
18.03.2022	11	10	29,08	46,02	N.A	1736,0	195,1	12,2	11,0	3569,0	2,06

Note* During the period of 10/03/2022 till 15/03/2022: Chiller circuits A & B were working, Smart Cooling™ was working on Circuit A & B

Note* The date 16/03/2022 is not included in the analysis as during this period Smart Cooling™ operates for 2 hours only, due to a chiller condenser fan issue

Note* During the period of 17/03/2022 till 18/03/2022: Chiller circuits A & C were working, Smart Cooling™ was working on Circuit C only

Conclusion:

Test results data show that the adiabatic equipment $Smart\ Cooling^{\mathsf{TM}}$ increases chiller performance, on average, by **30.3%** during 7 operating days.

Ali Soufan _

July 18, 2022

Annex:

Riels instruments srl Viale Spagna, 16 35020 Ponte San Nicolò (PD) - ITALY Ph. +39 0498961771 | info@riels.it

Date

Model:

15/12/2018

RIF600W

RIF600 | Clamp-on Ultrasonic Meter Calibration Report

Pipe diameter DN80
Ambient temperature 29°C
Standard Device before test Normal
Standard Devide After Test Normal
Test result Qualified

Measured Medium Water
Accuracy 1%
Signal Strength UP:

DOWN: 90

Standard device name Static volumetric method/standard Meter Method Water Flow/Standard Device

Standard device accuracy 0,20%

Test	Standard Meter flow		Temperature	Pressure	Tested Meter Flow		Basic Error		Repeatability																	
Point	m3/h		°C	Mpa		m3/h	3/h %		%	9																
Point 1	101,52		25,0	0,300	102,27		0,739																			
	101,47	101,47	25,0	0,300	102,07	102,10	0,591		-0,147																	
	101,42		25,0	0,300	101,97			0,542	Ī																	
	71,27	71,27	25,0	0,300	71,75	71,75																	0,673	7		1
Point 2	71,19		25,0	0,300	71,65		0,646	0,759	-0,146	0,147																
	71,34		25,0	0,300	71,86		Ī		0,729																	
	26,32		25,0	0,300	26,51 0,722			1																		
Point 3	26,36	26,36	25,0	0,300	26,56	26,55	0,759		-0,132																	
	26,39		25,0	0,300	26,58		0,720																			

Verification Based on Scale Factor=1 JJG 1030-2007 < Ultrasonic flowmeter verification procedures >

Riels instruments srl | test Report

Pag. 1 di 2

Riels instruments srl Viale Spagna, 16 35020 Ponte San Nicolò (PD) - ITALY Ph. +39 0498961771 | info@riels.it

Date

Model

15/12/2018

RIF600W

RIF600 |Test Report misuratore di portata ad ultrasuoni clamp on

DN80 Diametro tubazione 29°C Temperatura ambiente

Dispositivo standard prima del test Normale Dispositivo standard dop il test Normale

Risultato del test Qualified Liquido Acqua Accuratezza 1% Potenza dei segnali UP: DOWN: 90

Tipo di dispositivo standard Metodo volumetrico statico/Misuratore di portata volumetrico

Accuratezza del dispositivo standa 0,20%

Test	Misuratore	Misuratore standard		Pressione	Misuratore testato		errore base		Ripetibilità							
Punti	m3/	m3/h		Мра		m3/h	%		%							
	101,52		25,0	0,300	102,27		0,739									
Punto 1	101,47	101,47	25,0	0,300	102,07	102,10	0,591	,	-0,147							
	101,42	1	25,0	0,300	101,97		0,542									
	71,27		25,0	0,300	71,75		0,673	Ī		Ī						
Punto 2	71,19	71,27	25,0	0,300	71,65	71,75	0,646	0,759	-0,146	0,147						
	71,34		25,0	0,300	71,86		Ī		0,729	Ī						
	26,32		25,0	0,300	26,51							0,722	0,722	Ī		1
Punto 3	26,36	26,36	25,0	0,300	26,56	26,55	0,759	Ī	-0,132							
	26,39		25,0	0,300	26,58		0,720									

Verification Based on

JJG 1030-2007 < Ultrasonic flowmeter verification procedures >

Scale Factor=1

Riels instruments srl | test Report

Pag. 2 di 2

