
18 July 2022

TEST REPORT

159

SMART COOLING™ PRO10 SYSTEM

Al Hammadi Hospital

Test Participants:

Project name: MICROSOFT LAVALLE Location: Riyadh, KS

Integrated International Power Co: Mr. Owais Mir

Facility Engineer: Mr. Ahmad Suliman

Swiss Integrated Energy Technologies: Armands Mucenieks

Table of Contents

Introduction:	3
Main components:	4
Measuring instruments:	5
Testing procedures:	5
Conclusion:	. 9
Δημον	10

Introduction:

Type of building: SABB Bank, Dammam.

Cooling units: Air cooled water chiller Trane RTAA 324

Chiller booster: Smart Cooling ™ PRO 10, adiabatic technology with condenser protection.

Chillers were retrofitted with the intelligent adiabatic *Smart Cooling*™ system to reduce their electricity consumption and increase COP (Coefficient of Performance) efficiency.

The intelligent adiabatic $Smart\ Cooling^{\intercal}$ system combines an adiabatic evaporative pre-cooling process and condenser protection with mechanical air filtration. The intelligent adiabatic $Smart\ Cooling^{\intercal}$ system is mounted externally in front of the condensers of the cooling equipment. $Smart\ Cooling^{\intercal}$ initiates the adiabatic process even before the mechanical cooling kicks in and the equipment receives a temperature-reducing fine mist of processed water that within the cooling circuit.

Smart Cooling™ ensures 100% condenser protection from direct contact with water.

Main components:

Smart Cooling[™] comprises the following key components: **protective membranes**, **water** treatment and recirculation systems, high-pressure water pump, control unit, high-pressure nozzle panels, fasteners, and fixings.

Protective membranes are installed outside the condenser and cover its entire surface, preventing water mist from coming into direct contact with the condenser.

Water filtration, purification, and sterilization: the system purifies water from minerals and sterilizes water to prevent bacterial occurrence.

A **high-pressure pump** provides water pressure of up to 70 bar while a water recirculation system reintroduces non-evaporated water into the water purification and pump system.

The **control unit** regulates the system according to real-time data sets such as chiller parameters, ambient air temperature, and humidity to supply the adiabatic system with the appropriate amount of water.

A high-pressure nozzle provides water spray with 5- to 40-micron droplets.

A set of fasteners and fixings ensure the compatibility of the equipment with the chiller.

Measuring instruments:

A RIF600 ultrasonic water flow meter was used to measure the effectiveness of the chiller. The energy monitoring equipment Enicope analytics (BEST) was used to measure energy consumption. The Temperature & Humidity monitoring data logger (Elitech) was used to measure ambient temperature, humidity & air entering temperature into the condenser coils.

Chiller without Smart Cooling™ system

Chiller with Smart Cooling™ system

• Equipment tested: Air-cooled water chillers, Trane RTAC 500

BTU Reader

Temperature and Humidity
Reader

Eniscope (Energy Reader)

Testing procedures:

Testing has been carried out on chiller No. 1.

Testing period: 2022/07/09 to 2022/07/12 – adiabatic system *Smart Cooling* ™ switched ON

Testing period: 2022/07/13 to 2022/07/16 – adiabatic system Smart Cooling ™ switched OFF

Step 1:

A data logger is installed on the subject HVAC equipment to collect all applicable real-time energy consumption and unit performance information. Data is collected by using an Eniscope Analytics temperature sensor and BTU reader.

Step 2:

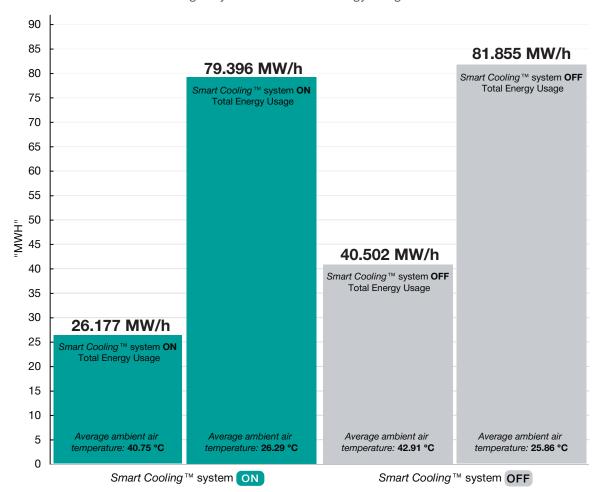
The Smart Cooling™ system is switched ON

Step 3:

During the period between 09/07/2022 and 12/07/2022, the test measured energy used by the chillers with the intelligent adiabatic system Smart Cooling™ turned ON (Chiller #1 was in operation). During this period, the chiller operated 96 hours, consumed 26.177 MW/h of electricity, produced 79.396 MW/h of cooling, with average chiller efficiency 3.15 kW/kW and average ambient temperature 40.75 °C.

Step 4:

The *Smart Cooling* ™ system is switched **OFF**


Step 5:

During the period from 13/07/2022 - 16/07/2022, the test measured energy used by the chiller without the intelligent adiabatic system *Smart Cooling* ™ unit turned **OFF** (Chiller #1 was in operation). During this period, the chiller operated 96 hours, consumed **40.502 MW/h** of electricity, and produced **81.885 MW/h** of cooling, with average chiller efficiency **2.18 kW/kW** and average ambient temperature **42.91 °C**.

Test Results Comparison

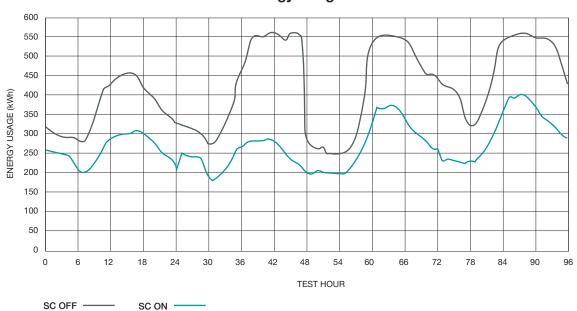
Smart Cooling[™] system **OFF** – Total Energy Usage: **2.18 kW/h**Smart Cooling[™] system **ON** – Total Energy Usage: **3.15 kW/h**

SMART COOLING STATUS

Post-analysis of data monitoring shows **44.5** % improvement in chiller performance achieved by the *Smart Cooling* $^{\text{TM}}$ system during **4 working days**.

Testing Results Overview:

Smart Cooling™ Test Report in Chiller 1 - Al Hammadi Hospital, Riyadh, KSA


9 1		. , , ,
SC STATUS	SC OFF	SC ON
TEST PERIOD	Wed - 13/07/2022 Sat - 16/07/2022	Sat - 09/07/2022 Tue - 12/07/2022
CHILLER OPERATING HOURS ("hrs")	96 hrs	96 hrs
AVG. AMBIENT TEMPERATURE (°C)	42.91 °C	40.75 °C
AVG. HUMIDITY (%)	11.35 %	12.85 %
TOTAL ENERGY USAGE (kWh)	40,502 kWh	26,177 kWh
TOTAL PRODUCED COOLING (kWh)	81,885 kWh	79,396 kWh
AVG. UNIT EFFICIENCY (kW/kW)	2.18 kW/kW	3.15 kW/kW
CHILLER EFFICIENCY (%)	44.5% imp	provement

Test Date/Time	Chiller Oprational	Ambient T	Ambient RH	CHW Flow	CHWR T	CHWS T	Cooling CAI	Energy Usage	Chiller Efficiency
DD/MM/YYYY	Hrs	°C	%	m³/hr	°C	°C	kWh	kWh	KW/KW
09/07/2022	24.0 hrs	40.9 °C	13.6 %	206.28	8.62 °C	5.25 °C	19413.82	6245.71	3.11
10/07/2022	24.0 hrs	40.7 °C	12.5 %	199.75	9.23 °C	5.42 °C	21257.43	5857.19	3.73
11/07/2022	24.0 hrs	41.0 °C	12.0 %	205.76	9.01 °C	5.59 °C	19623.80	6676.71	3.09
12/07/2022	24.0 hrs	40.3 °C	13.3 %	206.87	8.83 °C	5.52 °C	19100.65	7397.00	2.67

Test Date/Time	Chiller Oprational	Ambient T	Ambient RH	CHW Flow	CHWR T	CHWS T	Cooling CAI	Energy Usage	Chiller Efficiency
DD/MM/YYYY	Hrs	°C	%	m³/hr	℃	℃	kWh	kWh	KW/KW
13/07/2022	24.0 hrs	41.7 °C	11.3 %	208.76	9.12 °C	5.56 °C	20739.45	8820.66	2.44
14/07/2022	24.0 hrs	42.5 °C	11.9 %	212.64	9.15 °C	5.90 °C	19260.44	10417.45	2.02
15/07/2022	24.0 hrs	43.6 °C	11.7 %	211.91	9.28 °C	5.86 °C	20195.94	9946.28	2.29
16/07/2022	24.0 hrs	44.0 °C	10.4 %	211.26	9.64 °C	5.96 °C	21688.98	11318.08	1.97

NOTE: refer to the supported document for hourly data.

Chiller Energy Usage Overview

Conclusion:

Test results data show that the adiabatic equipment $Smart\ Cooling^{\mathsf{TM}}$ increases chiller performance, on average, by 44.5% during 4 operating days.

Annex:

Riels instruments srl Viale Spagna, 16 35020 Ponte San Nicolò (PD) - ITALY Ph. +39 0498961771 | info@riels.it

RIF600 | Clamp-on Ultrasonic Meter Calibration Report

Pipe diameter DN80 Date 15/12/2018
Ambient temperature 29°C Standard Device before test Normal Model: RIF600W

 Standard Devide After Test
 Normal

 Test result
 Qualified

 Measured Medium
 Water

 Accuracy
 1%

 Signal Strength
 UP: 90

 DOWN: 90

Standard device name Static volumetric method/standard Meter Method Water Flow/Standard Device

Standard device accuracy 0,20%

Test	Standard Meter flow m3/h		Temperature	Pressure	Tested Meter Flow m3/h		Basic Error		Repeatability																	
Point			°C	Мра																						
	101,52		25,0	0,300	102,27		0,739																			
Point 1	101,47	101,47	25,0	0,300	102,07	102,10	0,591		-0,147																	
	101,42		25,0	0,300	101,97		0,542	Ī	5000																	
	71,27		25,0	0,300	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75 0,646 0,729	71,75 0,646 0		1							0,673			
Point 2	71,19	71,27	25,0	0,300 71,65 71,75 0,646	71,75										0,759	-0,146	0,147									
	71,34		25,0	0,300	71,86												0,729			sico						
	26,32		25,0	0,300	26,51		0,722	Ī		Ī																
Point 3	26,36	26,36	25,0	0,300	26,56	26,55	0,759		-0,132																	
	26,39		25,0	0,300	26,58		0,720	3																		

Verification Based on Scale Factor=1 JJG 1030-2007 < Ultrasonic flowmeter verification procedures >

Riels instruments srl | test Report

Pag. 1 di 2

Riels instruments srl Viale Spagna, 16 35020 Ponte San Nicolò (PD) - ITALY Ph. +39 0498961771 | info@riels.it

Date

Model:

15/12/2018

RIF600W

RIF600 |Test Report misuratore di portata ad ultrasuoni clamp on

Diametro tubazione DN80
Temperatura ambiente 29°C

Dispositivo standard prima del test Normale
Dispositivo standard dop il test
Risultato del test
Qualified
Liquido

Liquido Acqua
Accuratezza 1%
Potenza dei segnali UP:
DOWN:

DOWN: 90
Tipo di dispositivo standard Metodo volumetrico statico/Misuratore di portata volumetrico

90

Accuratezza del dispositivo standa 0,20%

Test	est Misuratore standard		Pressione	Misura	tore testato	errore	base	Ripet	ibilità																			
Punti	m3/h	°C	Мра		m3/h		%		6																			
	101,52	25,0	0,300	102,27		0,739																						
Punto 1	101,47 101,47	25,0	0,300	102,07	102,10	0,591	[3]	-0,147																				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101,42	25,0	0,300	101,97																	0,542	T						
	71,27	25,0	0,300	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75	71,75	37	37	100			0,673			1
Punto 2	71,19 71,27	25,0	0,300	71,65 71,75																0,646	0,759	-0,146	0,147					
	71,34	25,0	0,300	71,86	2 60 60	0,729		11.154.17	1000																			
	26,32	26,32 25,0 0,300 26,51					0,722	8	8	1																		
Punto 3	26,36 26,36	25,0	0,300	26,56	26,55	0,759		-0,132																				
	26,39	25,0	0,300	26,58		0,720	100	the contract of																				

Verification Based on

JJG 1030-2007 < Ultrasonic flowmeter verification procedures >

Scale Factor=1

Riels instruments srl | test Report

Pag. 2 di 2

