
25 August 2022

**TEST REPORT** 

160



**SMART COOLING™** PRO10 SYSTEM

# Saudi British Bank

Test Participants:

Project name: SAUDI BRITISH BANK Location: Dammam, KSA

Customer: SAUDI BRITISH BANK

Contractor: Mr. Adel Batsh

Swiss Integrated Energy Technologies: Armands Mucenieks

# Table of Contents

| Introduction:          |
|------------------------|
| Main components:       |
| Measuring instruments: |
| Testing procedures:    |
| Conclusion:            |
| Annex:                 |

## Introduction:

Type of building: SABB Bank, Dammam.

Cooling units: Air cooled water chiller Trane RTAA 324

**Chiller booster:** Smart Cooling ™ PRO 10, adiabatic technology with condenser protection.

Chillers were retrofitted with the intelligent adiabatic *Smart Cooling*™ system to reduce their electricity consumption and increase COP (Coefficient of Performance) efficiency.

The intelligent adiabatic *Smart Cooling* ™ system combines an adiabatic evaporative pre-cooling process and condenser protection with mechanical air filtration. The intelligent adiabatic *Smart Cooling* ™ system is mounted externally in front of the condensers of the cooling equipment. *Smart Cooling* ™ initiates the adiabatic process even before the mechanical cooling kicks in and the equipment receives a temperature-reducing fine mist of processed water that within the cooling circuit.





# Main components:

*Smart Cooling* ™ comprises the following key components: protective membranes, water treatment and recirculation systems, high-pressure water pump, control unit, high-pressure nozzle panels, fasteners, and fixings.

- Protective membranes cover the condenser surface, preventing direct water contact.
- Water system purifies and sterilizes water to prevent mineral buildup and bacteria.
- **Pump** provides 70 bar pressure.
- Control unit regulates operation via real-time data (temperature, humidity, chiller parameters).
- Nozzles spray 5–40 µm droplets.
- A set of fasteners and fixings ensure the compatibility of the equipment with the chiller.



# **Measuring instruments:**

A RIF600 ultrasonic water flow meter was used to measure the effectiveness of the chiller. The energy monitoring equipment Enicope analytics (BEST) was used to measure energy consumption. The Temperature & Humidity monitoring data logger (Elitech) was used to measure ambient temperature, humidity & air entering temperature into the condenser coils.



Chiller without Smart Cooling<sup>™</sup> system



Chiller with Smart Cooling™ system

• Equipment tested: Air-cooled water chillers, Trane RTAC 500



BTU Reader



Temperature and Humidity
Reader



Eniscope (Energy Reader)



# **Testing procedures:**

Testing has been carried out on chiller No. 1.

Testing period: 2022/08/21 to 2022/08/23 - adiabatic system Smart Cooling™

switched ON

**Testing period:** 2022/08/23 to 2022/08/25 – adiabatic system *Smart Cooling* ™

switched OFF

#### Step 1:

A data logger is installed on the subject HVAC equipment to collect all applicable real-time energy consumption and unit performance information. Data is collected by using an Eniscope Analytics temperature sensor and BTU reader.

#### Step 2:

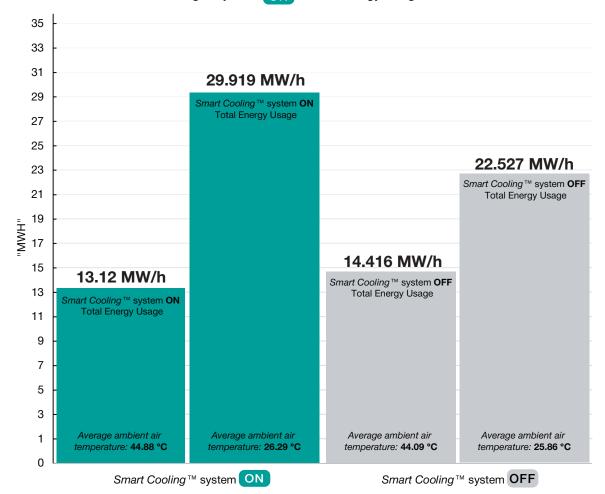
The Smart Cooling™ system is switched ON

#### Step 3:

During the period between 21/08/2022 and 23/08/2022, the test measured energy used by the chillers with the intelligent adiabatic system Smart Cooling ™ turned ON (Chiller #1 was in operation). During this period, the chiller operated 48 hours, consumed 13.12 MW/h of electricity, produced 29.396 MW/h of cooling, with average chiller efficiency 2.27 kW/kW and average ambient temperature 44.88 °C.

#### Step 4:

The *Smart Cooling* ™ system is switched **OFF** 


#### Step 5:

During the period from 23/08/2022 – 25/08/2022, the test measured energy used by the chiller without the intelligent adiabatic system *Smart Cooling* ™ unit turned **OFF** (Chiller #1 was in operation). During this period, the chiller operated 72 hours, consumed **14.416 MW/h** of electricity, and produced **22.527 MW/h** of cooling, with average chiller efficiency **1.55 kW/kW** and average ambient temperature **44.09 °C**.



# **Test Results Comparison**

Smart Cooling<sup>™</sup> system OFF – Total Energy Usage: **14.416 MW/h**Smart Cooling<sup>™</sup> system ON – Total Energy Usage: **13.12 MW/h** 

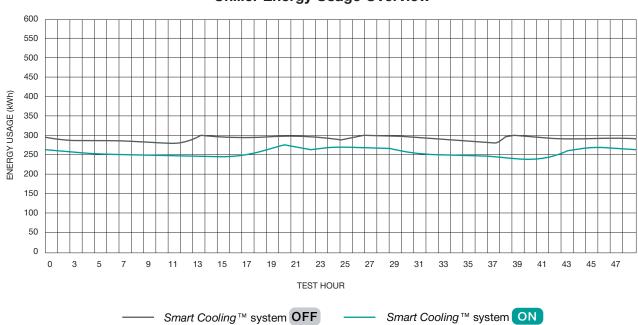


**SMART COOLING STATUS** 

Post-analysis of data monitoring shows **46.8% improvement** in chiller performance achieved by the *Smart Cooling*™ system **during 4 working days**.

# **Testing Results Overview:**

Smart Cooling™ Test Report in Chiller - SABB Bank, Dammam, KSA


| SC STATUS                       | SC <b>OFF</b>                     | SC <b>ON</b>                      |  |  |  |  |
|---------------------------------|-----------------------------------|-----------------------------------|--|--|--|--|
| TEST PERIOD                     | Tue - 23/08/2022 Thu - 25/08/2022 | Tue - 23/08/2022 Thu - 25/08/2022 |  |  |  |  |
| CHILLER OPERATING HOURS ("hrs") | 48 hrs                            | 48 hrs                            |  |  |  |  |
| AVG. AMBIENT TEMPERATURE (°C)   | 44.09 °C                          | 44.88 °C                          |  |  |  |  |
| AVG. HUMIDITY (%)               | 37.17 %                           | 38.27 %                           |  |  |  |  |
| TOTAL ENERGY USAGE (kWh)        | 14,416 kWh                        | 13,121 kWh                        |  |  |  |  |
| TOTAL PRODUCED COOLING (kWh)    | 22,527 kWh                        | 29,919 kWh                        |  |  |  |  |
| AVG. UNIT EFFICIENCY (kW/kW)    | 1.55 kW/kW                        | 2.27 kW/kW                        |  |  |  |  |
| CHILLER EFFICIENCY (%)          | 46.8% improvement                 |                                   |  |  |  |  |

| Test Date/Time  DD/MM/YYYY | Chiller<br>Oprational<br>Hrs | Ambient<br>T<br>°C | Ambient<br>RH<br>% | CHW<br>Flow<br>m³/hr | CHWR<br>T<br>°C | CHWS<br>T<br>°C | Cooling<br>CAI<br>kWh | Energy<br>Usage<br>kWh | Chiller<br>Efficiency |
|----------------------------|------------------------------|--------------------|--------------------|----------------------|-----------------|-----------------|-----------------------|------------------------|-----------------------|
| 8/21/2022                  | 24.0 hrs                     | 43.4 °C            | 38.6 %             | 155.66               | 10.13 °C        | 6.78 °C         | 608.06                | 260.38                 | 2.33                  |
| 8/22/2022                  | 24.0 hrs                     | 43.7 °C            | 38.7 %             | 155.30               | 9.74 °C         | 6.42 °C         | 600.35                | 259.55                 | 2.31                  |
| 8/23/2022                  | 24.0 hrs                     | 47.6 °C            | 37.6 %             | 154.96               | 9.40 °C         | 6.15 °C         | 585.05                | 269.78                 | 2.18                  |

| Test Date/Time | Chiller<br>Oprational<br>Hrs | Ambient<br>T | Ambient<br>RH<br>% | CHW<br>Flow<br>m³/hr | CHWR<br>T | CHWS<br>T<br>℃ | Cooling<br>CAI<br>kWh | Energy<br>Usage<br>kWh | Chiller<br>Efficiency |
|----------------|------------------------------|--------------|--------------------|----------------------|-----------|----------------|-----------------------|------------------------|-----------------------|
| 8/23/2022      | 24.0 hrs                     | 43.6 °C      | 38.2 %             | 150.25               | 12.75 °C  | 10.60 °C       | 376.91                | 284.77                 | 1.32                  |
| 8/24/2022      | 24.0 hrs                     | 44.1 °C      | 36.7 %             | 156.59               | 10.35 °C  | 7.85 °C        | 455.30                | 289.70                 | 1.57                  |
| 8/25/2022      | 24.0 hrs                     | 44.6 °C      | 36.6 %             | 163.97               | 9.38 °C   | 6.72 °C        | 505.46                | 289.03                 | 1.75                  |

NOTE: refer to the supported document for hourly data.

## **Chiller Energy Usage Overview**



TW CCC TSO

# **Conclusion:**

Test results data show that the adiabatic equipment  $Smart\ Cooling^{\mathsf{TM}}$  increases chiller performance, on average, by **46.8%** during 4 operating days.

Armands Mucenieks \_

August 25, 2022

## **Annex:**



Riels instruments srl Viale Spagna, 16 35020 Ponte San Nicolò (PD) - ITALY Ph. +39 0498961771 | info@riels.it

Date

Model:

15/12/2018

RIF600W



# RIF600 | Clamp-on Ultrasonic Meter Calibration Report

Pipe diameter DN80
Ambient temperature 29°C
Standard Device before test Normal
Standard Devide After Test Normal
Test result Qualified
Measured Medium Water

Accuracy 1%
Signal Strength UP: 90
DOWN: 90

Standard device name Static volumetric method/standard Meter Method Water Flow/Standard Device

Standard device accuracy 0,20%

| Test Standard Meter flow |              | Temperature | Pressure | Tested | Meter Flow                                      | Basic | Error | Repeat | tability |  |
|--------------------------|--------------|-------------|----------|--------|-------------------------------------------------|-------|-------|--------|----------|--|
| Point                    | m3/h         | °C          | Mpa      |        | m3/h                                            | 9/    | 0     | 9      | %        |  |
|                          | 101,52       | 25,0        | 0,300    | 102,27 |                                                 | 0,739 |       |        |          |  |
| Point 1                  | 101,47 101,4 | 7 25,0      | 0,300    | 102,07 | 102,10                                          | 0,591 | Ī     | -0,147 |          |  |
|                          | 101,42       | 25,0        | 0,300    | 101,97 |                                                 | 0,542 | 1     | 500.0  |          |  |
|                          | 71,27        | 25,0        | 0,300    | 71,75  | 71,75                                           | 0,673 | 0,759 | -0,146 | 0,147    |  |
| Point 2                  | 71,19 71,27  | 25,0        | 0,300    | 71,65  |                                                 | 0,646 |       |        |          |  |
|                          | 71,34        | 25,0        | 0,300    | 71,86  |                                                 | 0,729 | 1     |        | eden.    |  |
|                          | 26,32        | 25,0        | 0,300    | 26,51  |                                                 | 0,722 | 1     |        | T        |  |
| Point 3                  | 26,36 26,36  | 25,0        | 0,300    | 26,56  | See Port See See See See See See See See See Se | 0,759 | 1     | -0,132 |          |  |
|                          | 26,39        | 25,0        | 0,300    | 26,58  |                                                 |       |       | 0,720  |          |  |

Verification Based on Scale Factor=1 JJG 1030-2007 < Ultrasonic flowmeter verification procedures >

Riels instruments srl | test Report

Pag. 1 di 2





Riels instruments srl Viale Spagna, 16 35020 Ponte San Nicolò (PD) - ITALY Ph. +39 0498961771 | info@riels.it

Date

Model:

15/12/2018

RIF600W





# RIF600 |Test Report misuratore di portata ad ultrasuoni clamp on

Diametro tubazione DN80
Temperatura ambiente 29°C

Dispositivo standard prima del test Normale
Dispositivo standard dop il test
Risultato del test
Liquido
Accuratezza
Potenza dei segnali
Dispositivo standard prima del test
Qualified
Acqua
Acqua
UP:
DOWN:

Tipo di dispositivo standard Metodo volumetrico statico/Misuratore di portata volumetrico

90

Accuratezza del dispositivo standa 0,20%

| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Misuratore standard | Temperatura | Pressione | Misurat     | tore testato | errore | base   | Ripet            | ibilità |  |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|-----------|-------------|--------------|--------|--------|------------------|---------|--|------|
| Punti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m3/h                | °C          | Мра       |             | m3/h         | 9/     | 0      | 9                | 6       |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101,52              | 25,0        | 0,300     | 102,27      |              | 0,739  |        |                  |         |  |      |
| Punto 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101,47 101,47       | 25,0        | 0,300     | 102,07      | 102,10       | 0,591  | 0,759  | -0,147<br>-0,146 |         |  |      |
| and the state of t | 101,42              | 25,0        | 0,300     | 101,97      |              | 0,542  |        |                  | 0,147   |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71,27               | 25,0        | 0,300     | 71,75       | 71,75        | 0,673  |        |                  |         |  |      |
| Punto 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71,19 71,27         | 25,0        | 0,300     | 71,65       |              | 0,646  |        |                  |         |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71,34               | 25,0        | 0,300     | 71,86       |              |        |        | 0                | 0,729   |  | 1157 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26,32               | 25,0        | 0,300     | 26,51       |              | 0,722  |        | 8                |         |  |      |
| Punto 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26,36 26,36         | 25,0        | 0,300     | 26,56 26,55 | 26,55 0,759  | 1      | -0,132 |                  |         |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26,39               | 25,0        | 0,300     | 26,58       |              | 0,720  | 8      |                  |         |  |      |

Verification Based on Scale Factor=1 JJG 1030-2007 < Ultrasonic flowmeter verification procedures >

Riels instruments srl | test Report

Pag. 2 di 2

