




**SMART COOLING™ PRO10 SYSTEM**

# Microsoft Lavalle

Test Participants:

Project name: **MICROSOFT LAVALLE** Location: Karnataka, India

Carrier Engineer: Ravi Kiran

CBRE, Facility Engineer: Heggappa M.A.

Swiss Integrated Energy Technologies: Armands Mucenieks

## Table of Contents

|                                           |           |
|-------------------------------------------|-----------|
| <b>Introduction:</b> .....                | <b>3</b>  |
| <b>Main components:</b> .....             | <b>4</b>  |
| <b>Measuring instruments:</b> .....       | <b>5</b>  |
| <b>Testing procedures:</b> .....          | <b>6</b>  |
| <b>Testing results comparision:</b> ..... | <b>8</b>  |
| <b>Conclusion:</b> .....                  | <b>10</b> |
| <b>Annex:</b> .....                       | <b>11</b> |

## Introduction:

**Type of building:** Microsoft office building, India.

**Cooling units:** Air cooled water chiller **CARRIER 30XA1212**

**Chiller booster:** *Smart Cooling™ PRO 10*, adiabatic technology with condenser protection.

Chillers were retrofitted with the intelligent adiabatic *Smart Cooling™* system to reduce their electricity consumption and increase COP (Coefficient of Performance) efficiency.

The intelligent adiabatic *Smart Cooling™* system combines an adiabatic evaporative pre-cooling process and condenser protection with mechanical air filtration. The intelligent adiabatic *Smart Cooling™* system is mounted externally in front of the condensers of the cooling equipment. *Smart Cooling™* initiates the adiabatic process even before the mechanical cooling kicks in and the equipment receives a temperature-reducing fine mist of processed water that within the cooling circuit.

*Smart Cooling™* ensures 100% condenser protection from direct contact with water.

## Main components:

*Smart Cooling*™ comprises the following key components: **protective membranes**, **water treatment** and **recirculation systems**, **high-pressure water pump**, **control unit**, **high-pressure nozzle panels**, **fasteners**, and **fixings**.

**Protective membranes** are installed outside the condenser and cover its entire surface, preventing water mist from coming into direct contact with the condenser.

**Water filtration, purification, and sterilization:** the system purifies water from minerals and sterilizes water to prevent bacterial occurrence.

A **high-pressure pump** provides water pressure of up to 70 bar while a water recirculation system reintroduces non-evaporated water into the water purification and pump system.

The **control unit** regulates the system according to real-time data sets such as chiller parameters, ambient air temperature, and humidity to supply the adiabatic system with the appropriate amount of water.

A **high-pressure nozzle** provides water spray with **5- to 40-micron droplets**.

A **set of fasteners and fixings** ensure the compatibility of the equipment with the chiller.



## Measuring instruments:

A RIF600 ultrasonic water flow meter was used to measure the effectiveness of the chiller. The energy monitoring equipment Enicope analytics (BEST) was used to measure energy consumption. The Temperature & Humidity monitoring data logger (Elitech) was used to measure ambient temperature, humidity & air entering temperature into the condenser coils.



*Chiller without Smart Cooling™ system*



*Chiller with Smart Cooling™ system*

- **Equipment tested:** Air-cooled water chillers, **Trane RTAC 500**



## Testing procedures:

Testing has been carried out on chiller No. 1.

**Testing period:** 2022/02/17 to 2022/02/25 – adiabatic system *Smart Cooling*™ switched **ON**

**Testing period:** 2022/03/10 to 2022/03/18 – adiabatic system *Smart Cooling*™ switched **OFF**

### Step 1:

A data logger is installed on the subject HVAC equipment to collect all applicable real-time energy consumption and unit performance information. Data is collected by using an Eniscope Analytics temperature sensor and BTU reader.

### Step 2:

The *Smart Cooling*™ system is switched **ON**



BTU Reader



Temperature and Humidity Reader



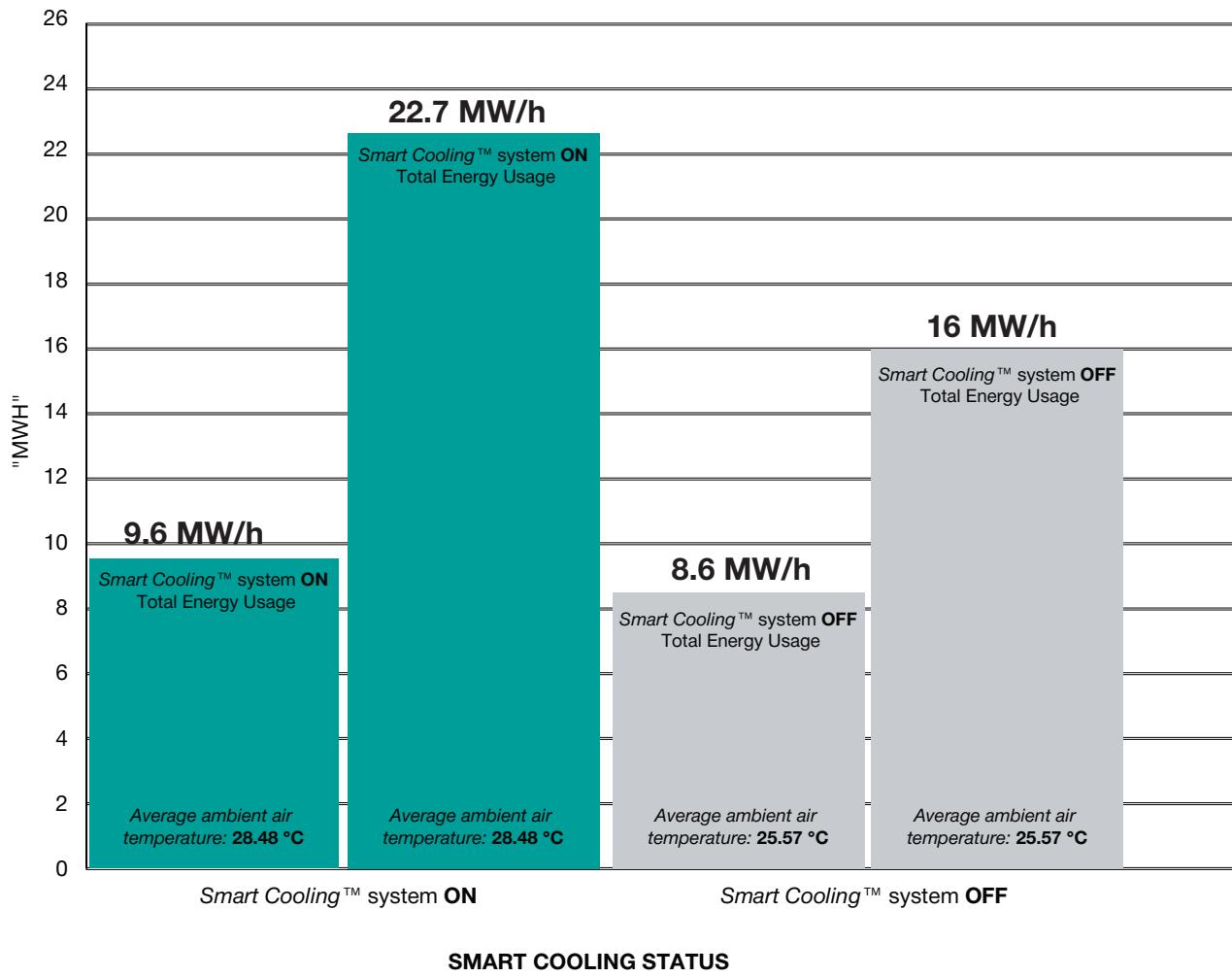
Eniscope (Energy Reader)

### Step 3:

During the period between 09/07/2022 and 12/07/2022, the test measured energy used by the chillers with the intelligent adiabatic system *Smart Cooling*™ turned **ON** (Chiller #1 was in operation). During this period, the chiller consumed **8.617 MW/h** of electricity, produced **16.125 MW/h** of cooling, with average ambient temperature **25.57 °C**.

### Step 4:

The *Smart Cooling*™ system is switched **OFF**


**Step 5:**

During the period from **10/03/2022 - 18/03/2022**, the test measured energy used by the chiller without the intelligent adiabatic system *Smart Cooling*™ unit turned **OFF** (Chiller #1 was in operation). During this period, the chiller consumed **9.617 MW/h** of electricity, and produced **22.775 MW/h** of cooling, with average ambient temperature **29.04 °C**.

## Test Results Comparison

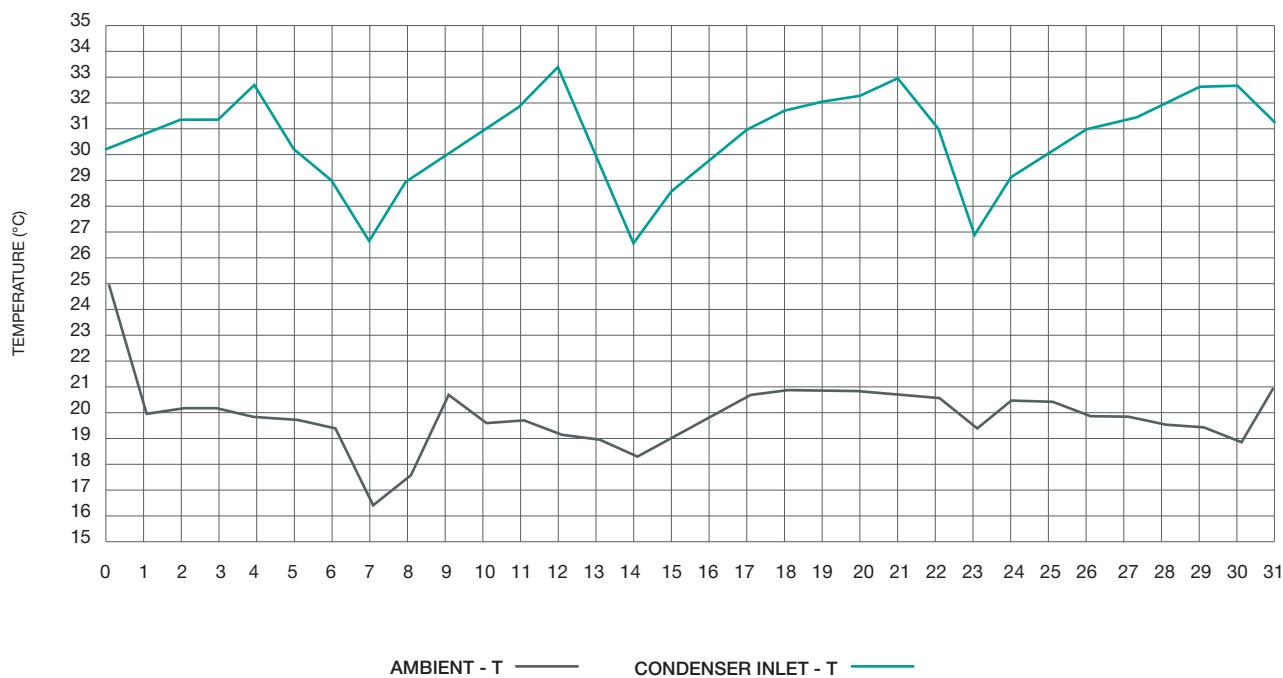
Smart Cooling™ system OFF – Total Energy Usage: **1.83 kW/h**

Smart Cooling™ system ON – Total Energy Usage: **2.38 kW/h**



Post-analysis of data monitoring shows **30.3 % improvement** in chiller performance achieved by the *Smart Cooling™* system during 7 working days.

## Testing Results Overview:


Smart Cooling™ Test Report in Chiller 1 – Microsoft Lavalle Road Office Building, Bangalore, India

| SC STATUS                       | SC OFF                          | SC ON                           |
|---------------------------------|---------------------------------|---------------------------------|
| TEST PERIOD                     | 17/02/2022 Thu - 25/02/2022 Fri | 10/03/2022 Thu - 18/03/2022 Fri |
| CHILLER OPERATING HOURS ("hrs") | 58 hrs                          | 73 hrs                          |
| AVG. AMBIENT TEMPERATURE (°C)   | 25.57 °C                        | 29.04 °C                        |
| SC OPERATING HOURS ("hrs")      | 0 hrs                           | 62 hrs                          |
| TOTAL ENERGY USAGE (kWh)        | 8,617 kWh                       | 9,617 kWh                       |
| TOTAL PRODUCED COOLING (kWh)    | 16,125 kWh                      | 22,775 kWh                      |
| AVG. UNIT EFFICIENCY (kW/kW)    | 1.83 kW/kW                      | 2.38 kW/kW                      |
| CHILLER EFFICIENCY (%)          | 30.3% improvement               |                                 |

### Unit Efficiency Overview



## Chiller Operating Hours Avg. Ambient



| Date<br>DD/MM/YY | Chiller<br>Operational<br>Hrs | Ambient<br>°C | Avg. Condenser<br>Air Entering T<br>°C | Total Chiller 1<br>E<br>kWh | Avg. C.W.<br>Flow<br>m³/hr | Avg. C.W.<br>Return T<br>°C | Avg. C.W.<br>Supply T<br>°C | Total Cooling<br>Capacity<br>kWh | Avg. Unit<br>Efficiency EER<br>KW/KW |
|------------------|-------------------------------|---------------|----------------------------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------------|--------------------------------------|
| 17.02.2022       | 10                            | 25,71333351   | 25,83062496                            | 1211,837102                 | 208,9354833                | 12,32866333                 | 11,30855733                 | 2521,641417                      | 2,098634034                          |
| 18.02.2022       | 8                             | 23,37122381   | 23,31992173                            | 1106,15272                  | 205,0766563                | 12,51935313                 | 11,29998167                 | 2389,184068                      | 2,168155484                          |
| 19.02.2022       | 2                             | 22,44348955   | 22,20585938                            | 36,74612957                 | 144,69825                  | 22,50055417                 | 22,4204875                  | 58,38325                         | 1,581573622                          |
| 20.02.2022       | 0                             | 24,93369492   | 24,93926497                            | 0                           | 0                          | 23,52220876                 | 23,51964175                 | 0                                | 0                                    |
| 21.02.2022       | 6                             | 29,22343715   | 29,05017376                            | 763,8693288                 | 167,1894167                | 15,23421014                 | 14,58079181                 | 1188,876045                      | 1,552791494                          |
| 22.02.2022       | 12                            | 27,44262155   | 27,31041662                            | 2204,872464                 | 206,2142708                | 11,48708014                 | 10,18113243                 | 3790,149545                      | 1,731486614                          |
| 23.02.2022       | 11                            | 25,8029356    | 25,37935604                            | 1912,21205                  | 211,4195606                | 10,34770023                 | 9,062722576                 | 3514,3619                        | 1,808262407                          |
| 24.02.2022       | 9                             | 24,99386586   | 24,60324075                            | 1380,963519                 | 209,0569167                | 13,12962991                 | 11,92116028                 | 2662,76575                       | 1,870459699                          |
| 25.02.2022       | 0                             | 24,21302084   | 24,16315103                            | 0                           | 0                          | 15,15617326                 | 15,76555451                 | 0                                | 0                                    |

Note\* During the period of 17/02/2022 till 20/02/2022: Chiller circuits A & B were working, during this period Smart Cooling™ was OFF

Notes\* During the period of 21/02/2022 till 25/02/2022: Chiller circuits A & C were working, during this period Smart cooling™ was OFF

| Date<br>DD/MM/YY | Chiller<br>Operational<br>Hrs | SC<br>Operating<br>Hrs | Avg. Ambient<br>°C | Average<br>Humidity<br>% | Avg. Condenser<br>Air Entering T<br>°C | Total Chiller 1<br>E<br>kWh | Avg. C.W.<br>Flow<br>m³/hr | Avg. C.W.<br>Return T<br>°C | Avg. C.W.<br>Supply T<br>°C | Total Cooling<br>Capacity<br>kWh | Avg. Unit<br>Efficiency EER<br>KW/KW |
|------------------|-------------------------------|------------------------|--------------------|--------------------------|----------------------------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------------|--------------------------------------|
| 10.03.2022       | 13                            | 8                      | 28,43              | 32,65                    | 21,08                                  | 1589,4                      | 209,8                      | 11,2                        | 10,0                        | 4027,9                           | 2,53                                 |
| 11.03.2022       | 12                            | 11                     | 29,2               | 24,66                    | 20,92                                  | 1273,1                      | 208,8                      | 12,0                        | 11,0                        | 3265,1                           | 2,51                                 |
| 12.03.2022       | 0                             | 0                      | 26,62              | 36,02                    | 26,16                                  | 0,0                         | 0,5                        | 22,2                        | 22,9                        | 0,0                              | 0,00                                 |
| 13.03.2022       | 0                             | 0                      | 26,49              | 36,8                     | 26,19                                  | 0,0                         | 0,6                        | 23,9                        | 24,8                        | 0,0                              | 0,00                                 |
| 14.03.2022       | 13                            | 11                     | 28,74              | 37,00                    | 20,43                                  | 1760,3                      | 207,4                      | 11,4                        | 9,9                         | 4772,3                           | 2,74                                 |
| 15.03.2022       | 12                            | 10                     | 28,89              | 36,28                    | 19,91                                  | 1604,6                      | 194,4                      | 11,6                        | 10,2                        | 4296,1                           | 2,68                                 |
| 16.03.2022       | 12                            | 2                      | 28,95              | 43,67                    | N.A                                    | 2129,0                      | 198,5                      | 11,6                        | 10,5                        | 3418,8                           | 1,67                                 |
| 17.03.2022       | 12                            | 12                     | 29,86              | 37,79                    | N.A                                    | 1654,0                      | 171,0                      | 12,4                        | 11,5                        | 2844,3                           | 1,79                                 |
| 18.03.2022       | 11                            | 10                     | 29,08              | 46,02                    | N.A                                    | 1736,0                      | 195,1                      | 12,2                        | 11,0                        | 3569,0                           | 2,06                                 |

Note\* During the period of 10/03/2022 till 15/03/2022: Chiller circuits A & B were working, Smart Cooling™ was working on Circuit A & B

Note\* The date 16/03/2022 is not included in the analysis as during this period Smart Cooling™ operates for 2 hours only, due to a chiller condenser fan issue

Note\* During the period of 17/03/2022 till 18/03/2022: Chiller circuits A & C were working, Smart Cooling™ was working on Circuit C only

## Conclusion:

Test results data show that the adiabatic equipment *Smart Cooling*™ increases chiller performance, on average, by **30.3%** during 7 operating days.

Ali Soufan  
July 18, 2022



**Annex:**

Riels instruments srl  
Viale Spagna, 16  
35020 Ponte San Nicolò (PD) - ITALY  
Ph. +39 0498961771 | info@riels.it

**RIF600 | Clamp-on Ultrasonic Meter Calibration Report**

|                             |                                                                           |        |            |
|-----------------------------|---------------------------------------------------------------------------|--------|------------|
| Pipe diameter               | DN80                                                                      | Date   | 15/12/2018 |
| Ambient temperature         | 29°C                                                                      |        |            |
| Standard Device before test | Normal                                                                    | Model: | RIF600W    |
| Standard Devide After Test  | Normal                                                                    |        |            |
| Test result                 | Qualified                                                                 |        |            |
| Measured Medium             | Water                                                                     |        |            |
| Accuracy                    | 1%                                                                        |        |            |
| Signal Strength             | UP: 90<br>DOWN: 90                                                        |        |            |
| Standard device name        | Static volumetric method/standard Meter Method Water Flow/Standard Device |        |            |
| Standard device accuracy    | 0,20%                                                                     |        |            |

| Test    | Standard Meter flow |        | Temperature | Pressure | Tested Meter Flow | Basic Error | Repeatability |       |
|---------|---------------------|--------|-------------|----------|-------------------|-------------|---------------|-------|
|         | Point               | m3/h   | °C          | Mpa      | m3/h              | %           | %             |       |
| Point 1 | 101,52              | 101,47 | 25,0        | 0,300    | 102,27            | 0,739       | -0,147        | 0,147 |
|         | 101,47              |        | 25,0        | 0,300    | 102,07            |             |               |       |
|         | 101,42              |        | 25,0        | 0,300    | 101,97            |             |               |       |
| Point 2 | 71,27               | 71,27  | 25,0        | 0,300    | 71,75             | 0,673       | 0,759         | 0,147 |
|         | 71,19               |        | 25,0        | 0,300    | 71,65             |             |               |       |
|         | 71,34               |        | 25,0        | 0,300    | 71,86             |             |               |       |
| Point 3 | 26,32               | 26,36  | 25,0        | 0,300    | 26,51             | 0,722       | -0,146        | 0,147 |
|         | 26,36               |        | 25,0        | 0,300    | 26,56             |             |               |       |
|         | 26,39               |        | 25,0        | 0,300    | 26,58             |             |               |       |

Verification Based on  
Scale Factor=1

JJG 1030-2007 < Ultrasonic flowmeter verification procedures >





Riels instruments srl  
Viale Spagna, 16  
35020 Ponte San Nicolò (PD) - ITALY  
Ph. +39 0498961771 | info@riels.it



## RIF600 | Test Report misuratore di portata ad ultrasuoni clamp on

|                                     |                                                              |        |            |
|-------------------------------------|--------------------------------------------------------------|--------|------------|
| Diametro tubazione                  | DN80                                                         | Date   | 15/12/2018 |
| Temperatura ambiente                | 29°C                                                         |        |            |
| Dispositivo standard prima del test | Normale                                                      | Model: | RIF600W    |
| Dispositivo standard dop il test    | Normale                                                      |        |            |
| Risultato del test                  | Qualified                                                    |        |            |
| Liquido                             | Acqua                                                        |        |            |
| Accuratezza                         | 1%                                                           |        |            |
| Potenza dei segnali                 | UP: 90<br>DOWN: 90                                           |        |            |
| Tipo di dispositivo standard        | Metodo volumetrico statico/Misuratore di portata volumetrico |        |            |
| Accuratezza del dispositivo standa  | 0,20%                                                        |        |            |

| Test    | Misuratore standard | Temperatura | Pressione | Misuratore testato |        | errore base |       | Ripetibilità |       |
|---------|---------------------|-------------|-----------|--------------------|--------|-------------|-------|--------------|-------|
|         |                     |             |           | m3/h               | °C     | Mpa         | m3/h  | %            | %     |
| Punto 1 | 101,52              | 101,47      | 25,0      | 0,300              | 102,27 | 102,10      | 0,739 | -0,147       | 0,147 |
|         | 101,47              |             | 25,0      | 0,300              | 102,07 |             | 0,591 |              |       |
|         | 101,42              |             | 25,0      | 0,300              | 101,97 |             | 0,542 |              |       |
| Punto 2 | 71,27               | 71,27       | 25,0      | 0,300              | 71,75  | 71,75       | 0,673 | 0,759        | 0,147 |
|         | 71,19               |             | 25,0      | 0,300              | 71,65  |             | 0,646 |              |       |
|         | 71,34               |             | 25,0      | 0,300              | 71,86  |             | 0,729 |              |       |
| Punto 3 | 26,32               | 26,36       | 25,0      | 0,300              | 26,51  | 26,55       | 0,722 | -0,132       | 0,147 |
|         | 26,36               |             | 25,0      | 0,300              | 26,56  |             | 0,759 |              |       |
|         | 26,39               |             | 25,0      | 0,300              | 26,58  |             | 0,720 |              |       |

Verification Based on JJG 1030-2007 < Ultrasonic flowmeter verification procedures >  
Scale Factor=1

